The aim of this study was to evaluate the impact of a low-intensity training program on subclinical cardiac dysfunction and on dyssynchrony in moderately obese middle aged men. Ten obese and 14 age-matched normal-weight men (BMI: 33.6 ± 1.
View Article and Find Full Text PDFObjective: Although increased blood flow (BF) in exercising muscles is thought to be impaired in obese subjects and may contribute to physical inactivity, data are scarce in this regard and the involvement of endothelium dysfunction remains partly hypothetical.
Methods: A total of 16 middle-aged obese men (body mass index, BMI ≥ 30 kg m(-2)) and 16 normal-weight men (BMI<25 kg m(-2)), matched for age, were recruited. We used ultrasonography to compare intima-media thickness (IMT) and distensibility of the carotid artery, flow-mediated dilation (FMD), nitrate-dependent dilation (NDD) and peak BF during post-ischemic hyperemia in the brachial artery (a conduit artery), and leg BF during knee-extensor exercise (indicative of resistance vessel function) in obese and in normal-weight men.
Obesity (Silver Spring)
October 2009
The purpose of the study was to evaluate the dynamics of diastolic and systolic function from rest to maximal exercise using conventional echocardiography and tissue Doppler imaging (TDI) in obese prepubertal boys compared to age-matched lean controls. Eighteen obese (10 with first degree obesity and 8 with second degree obesity according to French curves, BMI: 23.3+/-1.
View Article and Find Full Text PDFBackground: Obese children exhibit vascular disorders at rest depending on their pubertal status, degree of obesity, and level of insulin resistance. However, data regarding their vascular function during exercise remain scarce. The aims of the present study were to evaluate vascular morphology and function at rest, and lower limb blood flow during exercise, in prepubertal boys with mild-to-moderate obesity and in lean controls.
View Article and Find Full Text PDFAim: The main purpose of the present study was to assess whether similar vascular adaptive changes could be obtained by long-term intensive training involving predominantly either the lower or the upper limb musculature.
Methods: In 11 cyclists (C), 10 swimmers (S) and 10 sedentary controls (Sed), duplex Doppler ultrasonography was used to measure post-occlusion endothelium-dependent flow-mediated dilation (FMD), endothelium-independent, glycerine trinitrate-induced dilation (GTND) and exercise-induced blood flow changes in the arm (axillary artery) and leg (superficial femoral artery). Limb-specific exercise was achieved by one elbow-flexion or one leg-extension maximal exercise test, thereby allowing assessment of upper and lower limb muscle perfusion, vascular conductance and vasodilatory capacity of resistance vessels during effort.