Previous studies have reported that spaceflight specific conditions such as microgravity lead to changes in bacterial physiology and resistance behavior including increased expression of virulence factors, enhanced biofilm formation and decreased susceptibility to antibiotics. To assess if spaceflight induced physiological changes can manifest in human-associated bacteria, we compared three spaceflight relevant isolates (DSM 111179, ISS; DSM 31028, clean room; DSM 113836; artificial gravity bedrest study) with the type strain (DSM 20326). We tested the three strains regarding growth, colony morphology, metabolism, fatty acid and polar lipid pattern, biofilm formation, susceptibility to antibiotics and survival in different stress conditions such as treatment with hydrogen peroxide, exposure to desiccation, and irradiation with X-rays and UV-C.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) emitted by plants consist of a broad range of gasses which serve purposes such as protecting against herbivores, communicating with insects and neighboring plants, or increasing the tolerance to environmental stresses. Evidence is accumulating that the composition of VOC blends plays an important role in fulfilling these purposes. Constitutional emissions give insight into species-specific stress tolerance potentials and are an important first step in linking metabolism and function of co-occurring VOCs.
View Article and Find Full Text PDFStudying Human Medicine at the University of Zurich We compile the most important published information on studying human medicine at the Medical Faculty of the University of Zurich (as of 8.6.2020), with a brief overview of the 'Education Network' (www.
View Article and Find Full Text PDF