Successful control and prevention of biological invasions depend on identifying traits of non-native species that promote fitness advantages in competition with native species. Here, we show that, among 76 native and non-native woody plants of deciduous forests of North America, invaders express a unique functional syndrome that combines high metabolic rate with robust leaves of longer lifespan and a greater duration of annual carbon gain, behaviours enabled by seasonally plastic xylem structure and rapid production of thin roots. This trait combination was absent in all native species examined and suggests the success of forest invaders is driven by a novel resource-use strategy.
View Article and Find Full Text PDFMultiple drug discovery initiatives for tuberculosis are currently ongoing to identify and develop new potent drugs with novel targets in order to shorten treatment duration. One of the drug classes with a new mode of action is DprE1 inhibitors targeting an essential process in cell wall synthesis of Mycobacterium tuberculosis. In this investigation, three DprE1 inhibitors currently in clinical trials, TBA-7371, PBTZ169, and OPC-167832, were evaluated side-by-side as single agents in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon tuberculosis infection.
View Article and Find Full Text PDFThe imidazo[2,1-b]thiazole-5-carboxamides (ITAs) are a promising class of anti-tuberculosis agents shown to have potent activity in vitro and to target QcrB, a key component of the mycobacterial cytochrome bcc-aa3 super complex critical for the electron transport chain. Herein we report the intracellular macrophage potency of nine diverse ITA analogs with MIC values ranging from 0.0625-2.
View Article and Find Full Text PDFRespiration is a promising target for the development of new antimycobacterial agents, with a growing number of compounds in clinical development entering this target space. However, more candidate inhibitors are needed to expand the therapeutic options available for drug-resistant Mycobacterium tuberculosis infection. Here, we characterize a putative respiratory complex III (QcrB) inhibitor, TB47: a pyrazolo[1,5- a]pyridine-3-carboxamide.
View Article and Find Full Text PDFNew antitubercular agents are needed to combat the spread of multidrug- and extensively drug-resistant strains of . The frontline antitubercular drug isoniazid (INH) targets the mycobacterial enoyl-ACP reductase, InhA. Resistance to INH is predominantly through mutations affecting the prodrug-activating enzyme KatG.
View Article and Find Full Text PDF