The Diffusion of Innovations (DOI) model can be used to explore how faculty prioritize learning about and adopting new pedagogical approaches. Here, we use the DOI framework to contextualize biology faculty perceptions of a professional development (PD) program designed to help them create a full semester course-based undergraduate research experience (CURE) class at a large, public comprehensive university. PD sessions included exploring self-reflexive identity while fostering inclusive classroom spaces through understanding and interrupting implicit bias and microaggressions.
View Article and Find Full Text PDFWith mental health concerns on the rise among youth and young adults (age 12-24), increased mental health options include virtual care, apps and online tools, self-management and tracking tools, and digitally-enabled coordination of care. These tools may function as alternatives or adjuncts to face-to-face models of care. Innovative solutions in the form of digital mental health (dMH) services not only provide support, resources and care, but also decrease wait times and waitlists, increase access, and empower youth.
View Article and Find Full Text PDFIn inertial confinement fusion, hydrogen isotopes are fused together under high pressures and temperatures. Typically, the duration of these experiments is incredibly short, on the order of around 60-150 ps. Due to the high radiation environment, a detector's signal is typically data linked far distances to a protected location.
View Article and Find Full Text PDFThe imaging of individual Ba ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba ion imaging inside a high-pressure xenon gas environment. Ba ions chelated with molecular chemosensors are resolved at the gas-solid interface using a diffraction-limited imaging system with scan area of 1 × 1 cm located inside 10 bar of xenon gas.
View Article and Find Full Text PDFIn this chapter, we review scientific findings that form the basis for neuroimaging and neurophysiological biomarkers for ADHD diagnosis and treatment. We then highlight the different challenges in translating mechanistic findings into biomarkers for ADHD diagnosis and treatment. Population heterogeneity is a primary barrier for identifying biomarkers of ADHD diagnosis, which requires shifts toward dimensional approaches that identify clinically useful subgroups or prospective biomarkers that can identify trajectories of illness, function, or treatment response.
View Article and Find Full Text PDF