The standardized mean difference (sometimes called Cohen's d) is an effect size measure widely used to describe the outcomes of experiments. It is mathematically natural to describe differences between groups of data that are normally distributed with different means but the same standard deviation. In that context, it can be interpreted as determining several indexes of overlap between the two distributions.
View Article and Find Full Text PDFWe present in this work the package (https://github.com/chemle/emle-engine)─the implementation of a new machine learning embedding scheme for hybrid machine learning potential/molecular-mechanics (ML/MM) dynamics simulations. The package is based on an embedding scheme that uses a physics-based model of the electronic density and induction with a handful of tunable parameters derived from properties of the subsystem to be embedded.
View Article and Find Full Text PDFestimation of cerebrospinal fluid (CSF) velocity is crucial for understanding the glymphatic system and its potential role in neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Current cardiac or respiratory gated approaches, such as 4D flow MRI, cannot capture CSF movement in real time due to limited temporal resolution and in addition deteriorate in accuracy at low fluid velocities. Other techniques like real-time PC-MRI or time-spatial labeling inversion pulse are not limited by temporal averaging but have limited availability even in research settings.
View Article and Find Full Text PDF