Publications by authors named "L K Bickerstaff"

Study Objectives: Melanopsin-expressing retinal ganglion cells, which provide light information to time sleep and entrain circadian clocks, also influence perceived brightness raising the possibility that psychophysical paradigms could be used to explore the origins and implications of variability in melanopic sensitivity. We aimed to develop accessible psychophysical tests of melanopic vision and relate outcomes with a pupillometric measure of melanopsin function (post-illumination pupil response; PIPR) and prior light exposure.

Methods: Individually calibrated pairs of isoluminant stimuli differing in melanopic radiance from a four primary source were presented sequentially with superimposed random colour offsets in a two alternative forced choice brightness preference paradigm to 41 naïve adult participants with personal light exposure data for the prior 7 days and PIPR measures defined by comparing maintained pupil constriction for luminance matched 'red' vs 'blue' pulses.

View Article and Find Full Text PDF

Tetrodotoxins (TTXs) are traditionally associated with the occurrence of tropical Pufferfish Poisoning. In recent years, however, TTXs have been identified in European bivalve mollusc shellfish, resulting in the need to assess prevalence and risk to shellfish consumers. Following the previous identification of TTXs in shellfish from southern England, this study was designed to assess the wider prevalence of TTXs in shellfish from around the coast of the UK.

View Article and Find Full Text PDF

Unique base sequences derived from RNA of both infectious hematopoietic necrosis virus (IHNV) and infectious salmon anemia virus (ISAV) were detected and identified using a combination of surface-associated molecular padlock DNA probes (MPPs) and rolling circle amplification (RCA) in microcapillary tubes. DNA oligonucleotides with base sequences identical to RNA obtained from IHNV or ISAV were recognized by MPPs. Circularized MPPs were then captured on the inner surfaces of glass microcapillary tubes by immobilized DNA oligonucleotide primers.

View Article and Find Full Text PDF

A novel method for regenerating biosensors has been developed in which the highly specific detection of nucleic acid sequences is carried out using molecular padlock probe (MPP) technology and surface-associated rolling circle amplification (RCA). This technique has a low occurrence of false positive results when compared to polymerase chain reaction, and is an isothermal reaction, which is advantageous in systems requiring low power consumption such as remote field sensing applications. Gold-sputtered 96-well polystyrene microplates and a fluorescent label were used to explore the detection limits of the surface-associated RCA technique, specificity for different MPP, conditions for regeneration of the biomolecular sensing surface, and reproducibility of measurements on regenerated surfaces.

View Article and Find Full Text PDF

A new method for the molecular detection of the fish pathogens, infectious haematopoietic necrosis virus (IHNV) and infectious salmon anaemia virus (ISAV), is described. By employing molecular padlock probe (MPP) technology combined with rolling circle amplification (RCA) and hyperbranching (Hbr), it is possible to detect RNA target sequence from these viruses at levels comparable with those detected by the polymerase chain reaction (PCR), but without prior reverse transcription. The use of MPP technology combined with RCA and Hbr for the detection of IHNV and ISAV in fish exhibited selectivity comparable with that of PCR while potentially reducing the time and cost required for analysis.

View Article and Find Full Text PDF