This paper introduces a novel contactless single-chip detector that utilizes impedance-to-digital conversion technology to measure impedance in the microfluidic channel or capillary format analytical device. The detector is designed to operate similarly to capacitively coupled contactless conductivity detectors for capillary electrophoresis or chromatography but with the added capability of performing frequency sweeps up to 200 kHz. At each recorded data point, impedance and phase-shift data can be extracted, which can be used to generate impedance versus frequency plots, or phase-shift versus frequency plots.
View Article and Find Full Text PDFBioengineering (Basel)
September 2024
Three-dimensional cancer cell cultures have been a valuable research model for developing new drug targets in the preclinical stage. However, there are still limitations to these in vitro models. Scaffold-based systems offer a promising approach to overcoming these challenges in cancer research.
View Article and Find Full Text PDFRegenerative medicine is a fast expanding scientific topic. One of the main areas of development directions in this field is the usage of additive manufacturing to fabricate functional components that would be later integrated directly into the human body. One such structure could be a microfluidic valve which could replace its biological counterpart in veins as it is worn out over the lifetime of a patient.
View Article and Find Full Text PDFExpansion of the microfluidics field dictates the necessity to constantly improve technologies used to produce such systems. One of the approaches which are used more and more is femtosecond (fs) direct laser writing (DLW). The subtractive model of DLW allows for directly producing microfluidic channels via ablation in an extremely simple and cost-effective manner.
View Article and Find Full Text PDF