Fibrosis is an outcome of irregular wound healing, manifesting as heightened scar formation marked by substantial extracellular matrix (ECM) accumulation, persistent inflammation, and gradual tissue or organ restructuring. This condition disrupts the normal tissue architecture, impairing organ function. Herein, the pivotal role of fibrosis in retinal repair mechanisms is compared in mice and zebrafish in responses to laser-induced injury.
View Article and Find Full Text PDFDNA repair is directly performed by hundreds of core factors and indirectly regulated by thousands of others. We massively expanded a CRISPR inhibition and Cas9-editing screening system to discover factors indirectly modulating homology-directed repair (HDR) in the context of ∼18,000 individual gene knockdowns. We focused on CCAR1, a poorly understood gene that we found the depletion of reduced both HDR and interstrand crosslink repair, phenocopying the loss of the Fanconi anemia pathway.
View Article and Find Full Text PDFThis study evaluated a new method of adhesive system application on the bond strength between fiber post and root dentin using two adhesive systems. The canals of sixty bovine incisors were prepared and obturated. The roots were divided into six groups (n=10) according to the adhesive system (Clearfil SE - CSE and Single Bond Universal - SBU) and the application strategy (microbrush - MB; rotary brush - RB; and ultrasonic tip - US).
View Article and Find Full Text PDFAs scientific investigations increasingly adopt Open Science practices, reuse of data becomes paramount. However, despite decades of progress in internet search tools, finding relevant astrobiology datasets for an envisioned investigation remains challenging due to the precise and atypical needs of the astrobiology researcher. In response, we have developed the Astrobiology Resource Metadata Standard (ARMS), a metadata standard designed to uniformly describe astrobiology "resources," that is, virtually any product of astrobiology research.
View Article and Find Full Text PDFWound repair in the retina is a complex mechanism, and a deeper understanding of it is necessary for the development of effective treatments to slow down or even prevent degenerative processes leading to photoreceptor loss. In this study, we harnessed a laser-induced retinal degeneration model (532-nm laser photocoagulation with 300 μm spot size, 60 ms duration and 60 mV pulse), enabling a profound molecular elucidation and a comprehensive, prolonged observation of the wound healing sequence in a murine laser-induced degeneration model (C57BL/6J mice, 6-12 weeks) until day 49 post-laser. Our observations included the expression of specific extracellular matrix proteins and myofibroblast activity, along with an analysis of gene expression related to extracellular matrix and adhesion molecules through RNA measurements.
View Article and Find Full Text PDF