Cognitive hypotheses of hypnotic phenomena have proposed that executive attentional systems may be either inhibited or overactivated to produce a selective alteration or disconnection of some mental operations. Recent brain imaging studies have reported changes in activity in both medial (anterior cingulate) and lateral (inferior) prefrontal areas during hypnotically induced paralysis, overlapping with areas associated with attentional control as well as inhibitory processes. To compare motor inhibition mechanisms responsible for paralysis during hypnosis and those recruited by voluntary inhibition, we used electroencephalography (EEG) to record brain activity during a modified bimanual Go-Nogo task, which was performed either in a normal baseline condition or during unilateral paralysis caused by hypnotic suggestion or by simulation (in two groups of participants, each tested once with both hands valid and once with unilateral paralysis).
View Article and Find Full Text PDFIntroduction: Although there is an abundant debate regarding the mechanisms sustaining one of the most common sexual complaints among women, i.e., female hypoactive sexual desire disorder (HSDD), little remains known about the specific neural bases of this disorder.
View Article and Find Full Text PDFBrain mechanisms of hypnosis are poorly known. Cognitive accounts proposed that executive attentional systems may cause selective inhibition or disconnection of some mental operations. To assess motor and inhibitory brain circuits during hypnotic paralysis, we designed a go-no-go task while volunteers underwent functional magnetic resonance imaging (fMRI) in three conditions: normal state, hypnotic left-hand paralysis, and feigned paralysis.
View Article and Find Full Text PDFBrain mechanisms underlying hysterical conversion symptoms are still poorly known. Recent hypotheses suggested that activation of motor pathways might be suppressed by inhibitory signals based on particular emotional situations. To assess motor and inhibitory brain circuits during conversion paralysis, we designed a go-nogo task while a patient underwent functional magnetic resonance imaging (fMRI).
View Article and Find Full Text PDFPhenylketonuria (PKU) is an inherited metabolic disease characterized by phenylalanine (Phe) accumulation, which can lead to neurocognitive and neuromotor impairment. Sapropterin dihydrochloride, an FDA-approved synthetic formulation of tetrahydrobiopterin (6R-BH4, herein referred to as sapropterin) is effective in reducing plasma Phe concentrations in patients with hyperphenylalaninemia due to tetrahydrobiopterin (BH4)-responsive PKU, offering potential for improved metabolic control. Eighty patients, > or =8 years old, who had participated in a 6-week, randomized, placebo-controlled study of sapropterin, were enrolled in this 22-week, multicenter, open-label extension study comprising a 6-week forced dose-titration phase (5, 20, and 10 mg/kg/day of study drug consecutively for 2 weeks each), a 4-week dose-analysis phase (10 mg/kg/day), and a 12-week fixed-dose phase (patients received doses of 5, 10, or 20 mg/kg/day based on their plasma Phe concentrations during the dose titration).
View Article and Find Full Text PDF