Cancer therapy frequently fails due to the emergence of resistance. Many tumors include phenotypically immature tumor cells, which have been implicated in therapy resistance. Neuroblastoma cells can adopt a lineage-committed adrenergic (ADRN) or an immature mesenchymal (MES) state.
View Article and Find Full Text PDFTransition between differentiation states in development occurs swift but the mechanisms leading to epigenetic and transcriptional reprogramming are poorly understood. The pediatric cancer neuroblastoma includes adrenergic (ADRN) and mesenchymal (MES) tumor cell types, which differ in phenotype, super-enhancers (SEs) and core regulatory circuitries. These cell types can spontaneously interconvert, but the mechanism remains largely unknown.
View Article and Find Full Text PDFNeuroblastoma and other pediatric tumors show a paucity of gene mutations, which has sparked an interest in their epigenetic regulation. Several tumor types include phenotypically divergent cells, resembling cells from different lineage development stages. It has been proposed that super-enhancer-associated transcription factor (TF) networks underlie lineage identity, but the role of these enhancers in intratumoral heterogeneity is unknown.
View Article and Find Full Text PDF