Recent studies in our laboratory demonstrated that chronic hypoxia (CH) induces a localized inflammatory response in rat carotid body that is characterized by macrophage invasion and increased expression of inflammatory cytokines. Moreover, CH-induced increased hypoxic sensitivity is blocked by concurrent treatment with the common anti-inflammatory drugs, ibuprofen and dexamethasone. The present study examines the hypothesis that selected cytokines enhance the excitability of oxygen-sensitive type I cells in the carotid body, and that downstream effects of cytokines involve upregulation of the transcription factor, hypoxia inducible factor-1α (HIF-1α).
View Article and Find Full Text PDFChronic hypoxia (CH) induces an inflammatory response in rat carotid body that is characterized by immune cell invasion and the expression of pro-inflammatory cytokines. In the present study, we have investigated the role of type-A endothelin (ET-A) receptors in the development of CH-induced inflammation. After 7 days of CH (380 Torr), double-label immunofluorescence studies demonstrated elevated levels of ET-A receptor and tyrosine hydroxylase (TH) in O(2)-sensitive type I cells.
View Article and Find Full Text PDFRespir Physiol Neurobiol
September 2011
Experiments in recent years have revealed labile electrophysiological and neurochemical phenotypes in primary afferent neurons exposed to specific stimulus conditions associated with the development of chronic pain. These studies collectively demonstrate that the mechanisms responsible for functional plasticity are primarily mediated by novel neuroimmune interactions involving circulating and resident immune cells and their secretory products, which together induce hyperexcitability in the primary sensory neurons. In another peripheral sensory modality, namely the arterial chemoreceptors, sustained stimulation in the form of chronic hypoxia (CH) elicits increased chemoafferent excitability from the mammalian carotid body.
View Article and Find Full Text PDFPrevious studies in our laboratory established that reactive oxygen species (ROS) generated by NADPH oxidase (NOX) facilitate the open state of a subset of K+ channels in oxygen-sensitive type I cells of the carotid body. Thus pharmacological inhibition of NOX or deletion of a NOX gene resulted in enhanced chemoreceptor sensitivity to hypoxia. The present study tests the hypothesis that chronic hypoxia (CH)-induced hypersensitivity of chemoreceptors is modulated by increased NOX activity and elevated levels of ROS.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
February 2009
Exposure to chronic hypoxia (CH; 3-28 days at 380 Torr) induces adaptation in mammalian carotid body such that following CH an acute hypoxic challenge elicits an abnormally large increase in carotid sinus nerve impulse activity. The current study examines the hypothesis that CH initiates an immune response in the carotid body and that chemoreceptor hyperexcitability is dependent on the expression and action of inflammatory cytokines. CH resulted in a robust invasion of ED1(+) macrophages, which peaked on day 3 of exposure.
View Article and Find Full Text PDF