Publications by authors named "L J Schreyers"

Macrolitter, especially macroplastics, (> 0.5 cm) negatively impact freshwater ecosystems, where they can be retained along lake shores, riverbanks, floodplains or bed sediments. Long-term and large-scale assessments of macrolitter on riverbanks and lake shores provide an understanding of litter abundance, composition, and origin in freshwater systems.

View Article and Find Full Text PDF

Macroplastic fate and transport in the freshwater environment are of great concern due to the potentially harmful effects of macroplastic on plants, animals, and humans. Here, we present a modeling approach to simulate macroplastic fate and transport at the country scale based on an existing plastic release model. The fate model was parametrized through available monitoring data and results from field experiments and applied to Swiss rivers and lakes.

View Article and Find Full Text PDF

Rivers are one of the main conduits that deliver plastic from land into the sea, and also act as reservoirs for plastic retention. Yet, our understanding of the extent of river exposure to plastic pollution remains limited. In particular, there has been no comprehensive quantification of the contributions from different river compartments, such as the water surface, water column, riverbank and floodplain to the overall river plastic transport and storage.

View Article and Find Full Text PDF

Rivers represent one of the main conduits for the delivery of plastics to the sea, while also functioning as reservoirs for plastic retention. In tropical regions, rivers are exposed to both high levels of plastic pollution and invasion of water hyacinths. This aquatic plant forms dense patches at the river surface that drift due to winds and currents.

View Article and Find Full Text PDF

Plastic pollution is ubiquitous in aquatic environments worldwide. Rivers connect terrestrial and marine ecosystems, playing a key role in the transport of land-based plastic waste towards the sea. Emerging research suggests that in estuaries and tidal rivers, tidal dynamics play a significant role in plastic transport and retention dynamics.

View Article and Find Full Text PDF