Chimeric antigen receptor T cell therapies are revolutionizing the clinical practice of hematological tumors, whereas minimal progresses have been achieved in the solid tumor arena. Multiple reasons have been ascribed to this slower pace: The higher heterogeneity, the hurdles of defining reliable tumor antigens to target, and the broad repertoire of immune escape strategies developed by solid tumors are considered among the major ones. Currently, several CAR therapies are being investigated in preclinical and early clinical trials against solid tumors differing in the type of construct, the cells that are engineered, and the additional signals included with the CAR constructs to overcome solid tumor barriers.
View Article and Find Full Text PDFThe high penetration depth of neutrons through many metals and other common materials makes neutron imaging an attractive method for non-destructively probing the internal structure and dynamics of objects or systems that may not be accessible by conventional means, such as X-ray or optical imaging. While neutron imaging has been demonstrated to achieve a spatial resolution below 10 μm and temporal resolution below 10 μs, the relatively low flux of neutron sources and the limitations of existing neutron detectors have, until now, dictated that these cannot be achieved simultaneously, which substantially restricts the applicability of neutron imaging to many fields of research that could otherwise benefit from its unique capabilities. In this work, we present an attenuation modeling approach to the quantification of sub-pixel dynamics in cyclic ensemble neutron image sequences of an automotive gasoline direct injector at a 5 μs time scale with a spatial noise floor in the order of 5 μm.
View Article and Find Full Text PDFModels of fluid flow are used to improve the efficiency of oil and gas extraction and to estimate the storage and leakage of carbon dioxide in geologic reservoirs. Therefore, a quantitative understanding of key parameters of rock-fluid interactions, such as contact angles, wetting, and the rate of spontaneous imbibition, is necessary if these models are to predict reservoir behavior accurately. In this study, aqueous fluid imbibition rates were measured in fractures in samples of the Eagle Ford Shale using neutron imaging.
View Article and Find Full Text PDFDeep, underground repositories are needed to isolate radioactive waste from the biosphere. Because bentonite is an integral component of many multibarrier repository systems, information on the hydraulic behavior of bentonite is crucial for modeling the long-term viability of such systems. In this paper the hydraulic behavior of bentonite samples was analyzed as a function of aggregate size, and samples were subjected to hydrothermal treatments involving contact with NaCl, KCl, and deionized water.
View Article and Find Full Text PDF