Publications by authors named "L J Sandilands"

The impact of a finite thickness integrating sphere port on the measurement of diffuse reflectance is addressed in a combined numerical and experimental study. It is shown that for a finite thickness port, additional light losses occur due to scattering between the sphere port wall and the test sample, causing the sample reflectance to be underestimated. Monte Carlo ray tracing is applied to obtain quantitative estimates of the resulting measurement error for the case of a diffusely reflecting sample.

View Article and Find Full Text PDF

Participants in the 2022 Manufacturing Problem Contest were challenged to fabricate an optical filter with a specified stepped transmittance spanning three orders of magnitude from 400 to 1100 nm. The problem required that contestants be versed in the design, deposition, and measurement of optical filters to achieve good results. Nine samples from five institutions were submitted with total thicknesses between 5.

View Article and Find Full Text PDF

A model of radiative transport in fluorescent, scattering media that accounts for fluorescence reabsorption and reemission effects is discussed. The model is studied in a simplified one-dimensional geometry using the P3 approximation. An example calculation of a model system, sintered polytetrafluoroethylene doped with rhodamine 6G, is used to illustrate the features of the model.

View Article and Find Full Text PDF

Absolute measurements of photoluminescence are commonly performed using an integrating sphere setup, as this allows the collection of all emitted photons independent of the spatial characteristics of the emission. However, such measurements are plagued by multiple reflection effects occurring within the integrating sphere that make the sample illumination and sphere throughput sample dependent. To address this problem, we developed a matrix theory for integrating spheres with photoluminescent surfaces.

View Article and Find Full Text PDF

Strong charge-spin coupling is found in a layered transition-metal trichalcogenide NiPS_{3}, a van der Waals antiferromagnet, from studies of the electronic structure using several experimental and theoretical tools: spectroscopic ellipsometry, x-ray absorption, photoemission spectroscopy, and density functional calculations. NiPS_{3} displays an anomalous shift in the optical spectral weight at the magnetic ordering temperature, reflecting strong coupling between the electronic and magnetic structures. X-ray absorption, photoemission, and optical spectra support a self-doped ground state in NiPS_{3}.

View Article and Find Full Text PDF