Publications by authors named "L J Mendoza Herrera"

The severity of COVID 19 symptoms has a direct correlation with lymphopenia, affecting natural killer (NK) cells. SARS-CoV-2 specific "memory" NK cells obtained from convalescent donors can be used as cell immunotherapy. In 2022 a phase I, dose-escalation, single center clinical trial was conducted to evaluate the safety and feasibility of the infusion of CD3/CD56 NK cells against moderate/severe cases of COVID-19 (NCT04578210).

View Article and Find Full Text PDF

Klinefelter Syndrome (KS) is an aneuploid genetic condition in males characterized by at least one additional copy of the X chromosome. Due to fibrotic degeneration of the testis, these patients suffer infertility in the future. The pathogenic mechanism by which this occurs is still not well known.

View Article and Find Full Text PDF

Macrophages are effector cells of the immune system and essential modulators of immune responses. Different functional phenotypes of macrophages with specific roles in the response to stimuli have been described. The C57BL/6 and BALB/c mouse strains tend to selectively display distinct macrophage activation states in response to pathogens, namely, the M1 and M2 phenotypes, respectively.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between CEACAM1 levels and insulin metabolism in individuals with Type 2 diabetes and obesity.
  • Findings show that as insulin resistance and hyperinsulinemia increase, CEACAM1 levels decrease, particularly in those with prediabetes and Type 2 diabetes.
  • The results suggest that measuring circulating CEACAM1 could serve as a useful biomarker for assessing metabolic health and insulin clearance.
View Article and Find Full Text PDF