Seizures are generally associated with epilepsy but may also be a symptom of many other neurological conditions. A hallmark of a seizure is the intensity of the local neuronal activation, which can drive large-scale gene transcription changes. Such changes in the transcriptional profile likely alter neuronal function, thereby contributing to the pathological process.
View Article and Find Full Text PDFLoss of function progranulin (GRN) mutations are a major autosomal dominant cause of frontotemporal dementia (FTD). Patients with FTD due to GRN mutations (FTD-GRN) develop frontotemporal lobar degeneration with TDP-43 pathology type A (FTLD-TDP type A) and exhibit elevated levels of lysosomal proteins and storage material in frontal cortex, perhaps indicating lysosomal dysfunction as a mechanism of disease. To investigate whether patients with sporadic FTLD exhibit similar signs of lysosomal dysfunction, we compared lysosomal protein levels, transcript levels, and storage material in patients with FTD-GRN or sporadic FTLD-TDP type A.
View Article and Find Full Text PDFMany studies implicate mitochondrial dysfunction as a key contributor to cell loss in Parkinson disease (PD). Previous analyses of dopaminergic (DAergic) neurons from patients with Lewy-body pathology revealed a deficiency in nuclear-encoded genes for mitochondrial respiration, many of which are targets for the transcription factor estrogen-related receptor gamma (Esrrg/ERRγ). We demonstrate that deletion of ERRγ from DAergic neurons in adult mice was sufficient to cause a levodopa-responsive PD-like phenotype with reductions in mitochondrial gene expression and number, that partial deficiency of ERRγ hastens synuclein-mediated toxicity, and that ERRγ overexpression reduces inclusion load and delays synuclein-mediated cell loss.
View Article and Find Full Text PDF