Anthropogenically elevated inputs of nitrogen (N), phosphorus (P), and potassium (K) can affect the carbon (C) budget of nutrient-poor peatlands. Fungi are intimately tied to peatland C budgets due to their roles in organic matter decomposition and symbioses with primary producers; however, the influence of fertilization on peatland fungal composition and diversity remains unclear. Here, we examined the effect of fertilization over 10 years on fungal diversity, composition, and functional guilds along an acrotelm (10-20 cm), mesotelm (30-40 cm), and catotelm (60-70 cm) depth gradient at the Mer Bleue bog, Canada.
View Article and Find Full Text PDFArch Environ Contam Toxicol
February 2024
Peatlands are found on all continents, covering 3% of the global land area. However, the spatial extent and causes of metal enrichment in peatlands is understudied and no attempt has been made to evaluate global patterns of metal enrichment in bog and fen peatlands, despite that certain metals and rare earth elements (REE) arise from anthropogenic sources. We analyzed 368 peat cores sampled in 16 countries across five continents and measured metal and other element concentrations at three depths down to 70 cm as well as estimated cumulative atmospheric S deposition (1850-2009) for each site.
View Article and Find Full Text PDFDrainage-induced encroachment by trees may have major effects on the carbon balance of northern peatlands, and responses of microbial communities are likely to play a central mechanistic role. We profiled the soil fungal community and estimated its genetic potential for the decay of lignin and phenolics (class II peroxidase potential) along peatland drainage gradients stretching from interior locations (undrained, open) to ditched locations (drained, forested). Mycorrhizal fungi dominated the community across the gradients.
View Article and Find Full Text PDF