Protein production strategies in bacteria are often limited due to the need for cell lysis and complicated purification schemes. To avoid these challenges, researchers have developed bacterial strains capable of secreting heterologous protein products outside the cell, but secretion titers often remain too low for commercial applicability. Improved understanding of the link between secretion system structure and its secretory abilities can help overcome the barrier to engineering higher secretion titers.
View Article and Find Full Text PDFUnlabelled: Protein production strategies in bacteria are often limited due to the need for cell lysis and complicated purification schemes. To avoid these challenges, researchers have developed bacterial strains capable of secreting heterologous protein products outside the cell, but secretion titers often remain too low for commercial applicability. Improved understanding of the link between secretion system structure and its secretory abilities can help overcome the barrier to engineering higher secretion titers.
View Article and Find Full Text PDFBackground: Community wellness coalitions are an important part of functioning program infrastructure and have been effective in promoting policy, systems, and environmental (PSE) change, especially when paired with technical support by a community champion or Extension staff. PSE strategies are critical to support long-lasting behavior change but can be challenging to implement. Extension is an established and equipped organization that has potential to help community overcome those challenges.
View Article and Find Full Text PDFProteins comprise a multibillion-dollar industry in enzymes and therapeutics, but bacterial protein production can be costly and inefficient. Proteins of interest (POIs) must be extracted from lysed cells and inclusion bodies, purified, and resolubilized, which adds significant time and cost to the protein-manufacturing process. The Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS) has been engineered to address these problems by secreting soluble, active proteins directly into the culture media, reducing the number of purification steps.
View Article and Find Full Text PDF