The emergence of pathogens resistant to existing antimicrobial drugs is a growing worldwide health crisis that threatens a return to the pre-antibiotic era. To decrease the overuse of antibiotics, molecular diagnostics systems are needed that can rapidly identify pathogens in a clinical sample and determine the presence of mutations that confer drug resistance at the point of care. We developed a fully integrated, miniaturized semiconductor biochip and closed-tube detection chemistry that performs multiplex nucleic acid amplification and sequence analysis.
View Article and Find Full Text PDFTwo years ago, we described the first droplet digital PCR (ddPCR) system aimed at empowering all researchers with a tool that removes the substantial uncertainties associated with using the analogue standard, quantitative real-time PCR (qPCR). This system enabled TaqMan hydrolysis probe-based assays for the absolute quantification of nucleic acids. Due to significant advancements in droplet chemistry and buoyed by the multiple benefits associated with dye-based target detection, we have created a "second generation" ddPCR system compatible with both TaqMan-probe and DNA-binding dye detection chemistries.
View Article and Find Full Text PDFDigital PCR enables the absolute quantitation of nucleic acids in a sample. The lack of scalable and practical technologies for digital PCR implementation has hampered the widespread adoption of this inherently powerful technique. Here we describe a high-throughput droplet digital PCR (ddPCR) system that enables processing of ~2 million PCR reactions using conventional TaqMan assays with a 96-well plate workflow.
View Article and Find Full Text PDFImplementation of the on-chip immunoassay for alpha-fetoprotein (AFP)-L3% was achieved using a fully automated microfluidic instrument platform that will prepare the chip and run the assay with a total assay time of less than 10min. Reagent/sample mixing, concentration, and reaction in microfluidic channels occur by the electrokinetic analyte transport assay (EATA) technique, enabling the integration of all assay steps on-chip. The determination of AFP-L3%, a biomarker for hepatocellular carcinoma, was achieved by the presence of Lens culinaris agglutinin in the separation channel, causing separation of the fucosylated isoform, AFP-L3, from the nonfucosylated AFP-L1 by lectin affinity electrophoresis.
View Article and Find Full Text PDF