The anomalous strange metal phase found in high-T cuprates does not follow the conventional condensed-matter principles enshrined in the Fermi liquid and presents a great challenge for theory. Highly precise experimental determination of the electronic self-energy can provide a test bed for theoretical models of strange metals, and angle-resolved photoemission can provide this as a function of frequency, momentum, temperature and doping. Here we show that constant energy cuts through the nodal spectral function in (Pb,Bi)SrLaCuO have a non-Lorentzian lineshape, consistent with a self-energy that is k dependent.
View Article and Find Full Text PDFThe PD-1/PD-L1 pathway is a key immune checkpoint that regulates T cell activation. There is strong rationale to develop PD-1 agonists as therapeutics against autoimmunity, but progress in this area has been limited. Here, we generated T cell receptor (TCR) targeting, PD-1 agonist bispecifics called ImmTAAI molecules that mimic the ability of PD-L1 to facilitate the colocalization of PD-1 with the TCR complex at the target cell-T cell interface.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
The ability to modulate the collective properties of correlated electron systems at their interfaces and surfaces underpins the burgeoning field of "designer" quantum materials. Here, we show how an electronic reconstruction driven by surface polarity mediates a Stoner-like magnetic instability to itinerant ferromagnetism at the Pd-terminated surface of the nonmagnetic delafossite oxide metal PdCoO Combining angle-resolved photoemission spectroscopy and density-functional theory calculations, we show how this leads to a rich multiband surface electronic structure. We find similar surface state dispersions in PdCrO, suggesting surface ferromagnetism persists in this sister compound despite its bulk antiferromagnetic order.
View Article and Find Full Text PDFStrong many-body interactions in solids yield a host of fascinating and potentially useful physical properties. Here, from angle-resolved photoemission experiments and ab initio many-body calculations, we demonstrate how a strong coupling of conduction electrons with collective plasmon excitations of their own Fermi sea leads to the formation of plasmonic polarons in the doped ferromagnetic semiconductor EuO. We observe how these exhibit a significant tunability with charge carrier doping, leading to a polaronic liquid that is qualitatively distinct from its more conventional lattice-dominated analogue.
View Article and Find Full Text PDFWe study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe_{2} by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe_{2} with its sister compound PtSe_{2}, we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p-orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures.
View Article and Find Full Text PDF