The rise of ocean oxygen levels is thought to have boosted the evolution of animals. Modelling of the sedimentary geochemical record provides evidence for a late Ediacaran rise in oxygen, though likely after the origin of animals.
View Article and Find Full Text PDFMarine sedimentary rocks deposited across the Neoproterozoic Cryogenian Snowball interval, ~720-635 million years ago, suggest that post-Snowball fertilization of shallow continental margin seawater with phosphorus accelerated marine primary productivity, ocean-atmosphere oxygenation, and ultimately the rise of animals. However, the mechanisms that sourced and delivered bioavailable phosphate from land to the ocean are not fully understood. Here we demonstrate a causal relationship between clay mineral production by the melting Sturtian Snowball ice sheets and a short-lived increase in seawater phosphate bioavailability by at least 20-fold and oxygenation of an immediate post-Sturtian Snowball ocean margin.
View Article and Find Full Text PDFThe Neoproterozoic carbonate record contains multiple carbon isotope anomalies, which are the subject of intense debate. The largest of these anomalies, the Shuram excursion (SE), occurred in the mid-Ediacaran (~574-567 Ma). Accurately reconstructing marine redox landscape is a clear path toward making sense of the mechanism that drives this δ C anomaly.
View Article and Find Full Text PDFThe late Ediacaran witnessed an increase in metazoan diversity and ecological complexity, marking the inception of the Cambrian Explosion. To constrain the drivers of this diversification, we combine redox and nutrient data for two shelf transects, with an inventory of biotic diversity and distribution from the Nama Group, Namibia (~550 to ~538 Million years ago; Ma). Unstable marine redox conditions characterised all water depths in inner to outer ramp settings from ~550 to 547 Ma, when the first skeletal metazoans appeared.
View Article and Find Full Text PDFOxygenation of Earth's atmosphere and oceans occurred across three major steps during the Paleoproterozoic, Neoproterozoic, and Paleozoic eras, with each increase having profound consequences for the biosphere. Biological or tectonic revolutions have been proposed to explain each of these stepwise increases in oxygen, but the principal driver of each event remains unclear. Here we show, using a theoretical model, that the observed oxygenation steps are a simple consequence of internal feedbacks in the long-term biogeochemical cycles of carbon, oxygen, and phosphorus, and that there is no requirement for a specific stepwise external forcing to explain the course of Earth surface oxygenation.
View Article and Find Full Text PDF