The aim of this study was to investigate the tribological characteristics of commercially available high-strength polyphthalamide-based composites with great contents (30-50 wt.%) of both carbon and glass fibers in point and linear contacts against metal and ceramic counterfaces under dry friction and oil-lubricated conditions at various loads and sliding speeds. The lengths of both types of fibers were varied simultaneously with their contents while samples were fabricated from granules by injection molding.
View Article and Find Full Text PDFIn this paper, the tribological characteristics of polyethersulfone-based composites reinforced with short carbon fibers (SCFs) at aspect ratios of 14-250 and contents of 10-30 wt.% are reported for linear metal-polymer and ceramic-polymer tribological contacts. The results showed that the wear resistance could be greatly improved through tribological layer formation.
View Article and Find Full Text PDFThis paper addresses peculiarities in the formation and adherence of a tribofilm on the wear track surface of antifriction PI- and PEI-based composites, as well as a transfer film (TF) on a steel counterface. It is shown that during hot pressing, PTFE nanoparticles melted and coalesced into micron-sized porous inclusions. In the PEI matrix, their dimensions were much larger (up to 30 µm) compared to those in the PI matrix (up to 6 µm).
View Article and Find Full Text PDFHigh-strength PI and PEI polymers differ by chemical structure and flexibility of the polymer chains that ensure lower cost and higher manufacturability of the latter. The choice of a particular polymer matrix is of actuality at design of antifriction composites on their basis. In this study, a comparative analysis of tribological behavior of PI and PEI- based composites was carried out with linear contact rubbing.
View Article and Find Full Text PDFThe structure, mechanical and tribological properties of the PEI- and PI-based composites reinforced with Chopped Carbon Fibers (CCF) and loaded with commercially available micron-sized solid lubricant fillers of various nature (polymeric-PTFE, and crystalline-Gr and MoS) were studied in the temperature range of 23-180 (240) °C. It was shown that tribological properties of these ternary composites were determined by the regularities of the transfer film (TF) adherence on their wear track surfaces. The patterns of TFs formation depended on the chemical structure of the polymer matrix (stiffness/flexibility) as well as the tribological test temperatures.
View Article and Find Full Text PDF