Motivation: Phage therapy is a viable alternative for treating bacterial infections amidst the escalating threat of antimicrobial resistance. However, the therapeutic success of phage therapy depends on selecting safe and effective phage candidates. While experimental methods focus on isolating phages and determining their lifecycle and host range, comprehensive genomic screening is critical to identify markers that indicate potential risks, such as toxins, antimicrobial resistance, or temperate lifecycle traits.
View Article and Find Full Text PDFSpecies identification following shark-related incidents is critical for effective incident management and for collecting data to inform shark-bite mitigation strategies. Witness statements are not always reliable, and species identification is often ambiguous or missing. Alternative methods for species identification include morphological assessments of bite marks, analysis of collected teeth at the scene of the incident, and genetic approaches.
View Article and Find Full Text PDFPhages integrated into a bacterial genome - called prophages - continuously monitor the vigour of the host bacteria to determine when to escape the genome and to protect their host from other phage infections, and they may provide genes that promote bacterial growth. Prophages are essential to almost all microbiomes, including the human microbiome. However, most human microbiome studies have focused on bacteria, ignoring free and integrated phages, so we know little about how these prophages affect the human microbiome.
View Article and Find Full Text PDFMotivation: Microbial communities have a profound impact on both human health and various environments. Viruses infecting bacteria, known as bacteriophages or phages, play a key role in modulating bacterial communities within environments. High-quality phage genome sequences are essential for advancing our understanding of phage biology, enabling comparative genomics studies and developing phage-based diagnostic tools.
View Article and Find Full Text PDFThe gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap.
View Article and Find Full Text PDF