Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection. However, high-density breasts show poorer detection performance since dense tissues can mask or even simulate masses. Therefore, the sensitivity of mammography for breast cancer detection can be reduced by more than 20% in dense breasts.
View Article and Find Full Text PDFComputer-aided detection systems based on deep learning have shown great potential in breast cancer detection. However, the lack of domain generalization of artificial neural networks is an important obstacle to their deployment in changing clinical environments. In this study, we explored the domain generalization of deep learning methods for mass detection in digital mammography and analyzed in-depth the sources of domain shift in a large-scale multi-center setting.
View Article and Find Full Text PDFComput Methods Programs Biomed
August 2022
Background And Objectives: The detection and delineation of atherosclerotic plaque are usually manually performed by medical experts on the carotid artery. Evidence suggests that this manual process is subject to errors and has a large variability between experts, equipment, and datasets. This paper proposes a robust end-to-end framework for automatic atherosclerotic plaque detection.
View Article and Find Full Text PDFWe assessed the correlation between the biomarkers of lower limb atherosclerosis (eg, ankle-brachial index [ABI]) and of carotid atherosclerosis (eg, common carotid intima-media thickness (IMT) and presence of atherosclerotic plaque) in a population-based cohort from Girona (Northwest Spain) recruited in 2010. Ankle-brachial index and carotid ultrasound were performed in all participants. Generalized additive multivariable models were used to adjust a regression model of common carotid IMT on ABI.
View Article and Find Full Text PDF