Colorectal cancer (CRC) is the fourth cause of death from cancer worldwide mainly due to the high incidence of drug-resistance. During a screen for new actionable targets in drug-resistant tumours we recently identified p65BTK - a novel oncogenic isoform of Bruton's tyrosine kinase. Studying three different cohorts of patients here we show that p65BTK expression correlates with histotype and cancer progression.
View Article and Find Full Text PDFBackground: Lung cancer is still the main cause of cancer death worldwide despite the availability of targeted therapies and immune-checkpoint inhibitors combined with chemotherapy. Cancer cell heterogeneity and primary or acquired resistance mechanisms cause the elusive behaviour of this cancer and new biomarkers and active drugs are urgently needed to overcome these limitations. p65BTK, a novel isoform of the Bruton Tyrosine Kinase may represent a new actionable target in non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFBruton's tyrosine kinase (BTK) is essential for B-cell proliferation/differentiation and it is generally believed that its expression and function are limited to bone marrow-derived cells. Here, we report the identification and characterization of p65BTK, a novel isoform abundantly expressed in colon carcinoma cell lines and tumour tissue samples. p65BTK protein is expressed, through heterogeneous nuclear ribonucleoprotein K (hnRNPK)-dependent and internal ribosome entry site-driven translation, from a transcript containing an alternative first exon in the 5'-untranslated region, and is post-transcriptionally regulated, via hnRNPK, by the mitogen-activated protein kinase (MAPK) pathway.
View Article and Find Full Text PDFGlycogen Synthase Kinase-3 alpha (GSK3A) and beta (GSK3B) isoforms are encoded by distinct genes, are 98% identical within their kinase domain and perform similar functions in several settings; however, they are not completely redundant and, depending on the cell type and differentiative status, they also play unique roles. We recently identified a role for GSK3B in drug resistance by demonstrating that its inhibition enables necroptosis in response to chemotherapy in p53-null drug-resistant colon carcinoma cells. We report here that, similarly to GSK3B, also GSK3A silencing/inhibition does not affect cell proliferation or cell cycle but only abolishes growth after treatment with DNA-damaging chemotherapy.
View Article and Find Full Text PDF