Purpose: Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation.
View Article and Find Full Text PDFPurpose: To describe the contribution of Margarita Malakyan to the development of radiation biology in Armenia and how her multidisciplinary collaboration with chemists, physicists and biologists around the world led to the development of radioprotectors and radiosensitizers of different origins.
Conclusion: Margarita Malakyan was a very active and initiative woman, a radiobiologist, whose hard work and enthusiasm led to the establishment of a very constructive scientific network and to the development of newly synthesized metal compounds. During her short but very productive life, the synthesis, characterization, as well as toxicity and radioprotective studies of different compounds led to the suggestion of a number of metal complexes of Schiff bases as effective radioprotective agents and radiosensitizers.
The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism.
View Article and Find Full Text PDFThe comparative analysis of the rat liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and purine nucleoside phosphorylase post-radiation activity levels after a total two-hour long single and fractional exposure of the animals to low-intensity 900 MHz frequency electromagnetic field showed that the most sensitive enzymes to the both schedules of radiation are the liver creatine kinase, as well as the blood serum creatine kinase and alkaline phosphatase. According to the comparative analysis of the dynamics of changes in the activity level of the liver and blood serum creatine kinase, alanine aminotransferase, aspartate aminotransferase and purine nucleoside phosphorylase, both single and fractional radiation schedules do not affect the permeability of a hepatocyte cell membrane, but rather cause changes in their energetic metabolism. The correlation analysis of the post-radiation activity level changes of the investigated enzymes did not reveal a clear relationship between them.
View Article and Find Full Text PDFThe effects of a single exposure of rats to the whole-body roentgen irradiation at the doses of 3.5 Gy and 4.5 Gy on the activity of creatine kinase, purine nucleoside phosphorylase, alanine aminotransferase, aspartate aminotransferase, as well as on the state of the nuclear-nucleolar apparatus in rat hepatocytes on the 6th and 13th days after radiation exposure have been studied.
View Article and Find Full Text PDF