Analyzing Alzheimer's disease (AD) pathology within anatomical subregions is a significant challenge, often carried out by pathologists using a standardized, semi-quantitative approach. To augment traditional methods, a high-throughput, high-resolution pipeline was created to classify the distribution of AD pathology within hippocampal subregions. USC ADRC post-mortem tissue sections from 51 patients were stained with 4G8 for amyloid, Gallyas for neurofibrillary tangles (NFTs) and Iba1 for microglia.
View Article and Find Full Text PDFExposure to early life adversity (ELA), including childhood maltreatment, is one of the most significant risk factors for the emergence of neuropsychiatric disorders in adolescence and adulthood. Despite this relationship being well established, the underlying mechanisms remain unclear. One way to achieve this understanding is to identify molecular pathways and processes that are perturbed as a consequence of childhood maltreatment.
View Article and Find Full Text PDFThe dentate gyrus (DG) is an integral portion of the hippocampal formation, and it is composed of three layers. Quantitative magnetic resonance (MR) imaging has the capability to map brain tissue microstructural properties which can be exploited to investigate neurodegeneration in Alzheimer's disease (AD). However, assessing subtle pathological changes within layers requires high resolution imaging and histological validation.
View Article and Find Full Text PDFThe cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative.
View Article and Find Full Text PDFAn essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization.
View Article and Find Full Text PDF