In environmental risk assessments of nuclear waste, there is need to estimate the potential risks of a large number of radionuclides over a long time period during which the environment is likely to change. Usually concentration ratios (CRs) are used to calculate the activity concentrations in organisms. However, CRs are not available for all radionuclides and they are not easily scalable to the varying environment.
View Article and Find Full Text PDFAs a result of nuclear accidents and weapons tests, the radionuclides Cs-137 and Sr-90 are common contaminants in aquatic ecosystems. Concentration ratios (CR) based on concentrations of stable Cs and Sr in biota and media are used for the estimation of transfer of their radioisotopes for radiation dose calculations in environmental and human safety assessments. Available element-specific CRs vary by over an order of magnitude for similar organisms, thus affecting the dose estimates proportionally.
View Article and Find Full Text PDFThis study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans.
View Article and Find Full Text PDFIn safety assessments of underground radioactive waste repositories, understanding radionuclide fate in ecosystems is necessary to determine the impacts of potential releases. Here, the reliability of two mechanistic models (the compartmental K-model and the 3D dynamic D-model) in describing the fate of radionuclides released into a Baltic Sea bay is tested. Both are based on ecosystem models that simulate the cycling of organic matter (carbon).
View Article and Find Full Text PDFThe synthesis of natural and synthetic porphyrin complexes with Pt, Pd, Rh, and Ru is reported. Their electronic absorption spectra, phosphorescence spectra, and lifetimes at room temperature both in the presence and in the absence of oxygen were studied. It has been shown that the variation of the nature of the central metal atom and of the substituents in pyrrole and phenyl rings allows the obtaining of metalloporphyrins with various phosphorescence excitation and phosphorescing emission spectra at room temperature.
View Article and Find Full Text PDF