The effect of mitochondrial ATP-dependent K(+)-channel (K(+)ATP-channel) opener diazoxide (DZ) on transmembrane potassium exchange and reactive oxygen species (ROS) formation under the opening of mitochondrial permeability transition pore (MPTP) was studied in rat liver mitochondria. The activation of K(+)-cycling (K(+)-uptake and K(+)/H(+)-exchange) by DZ was established with peak effect at < or = 500 nM. It was shown that MPTP opening as well resulted in the activation of K(+)-cycling together with simultaneous activation of Ca(2+)-cycle in mitochondria.
View Article and Find Full Text PDFThe effect of potassium on state 4 respiration (substrate oxidation in the absence of ADP) was investigated. It was shown that potential-dependent potassium uptake in the brain mitochondria results in mitochondrial depolarization. Taking into account depolarization effect of potassium, the contribution of the endogenous proton leak as well as K(+)-uptake to the respiration rate was calculated.
View Article and Find Full Text PDFThe effect of mitochondrial ATP-dependent K(+)-channel (K+(ATP)-channel) opener diazoxide (DZ) on the oxygen consumption, functional state and the opening of cyclosporine-sensitive pore in the rat liver mitochondria has been studied. It has been established that K+(ATP)-channel activation results in the increase of the oxygen consumption rate (V4(s)) and the uncoupling due to the acceleration of K(+)-cycling, the decrease in state 3 respiration rate (V3) and the respiratory control ratio (RCR). Under K+(ATP)-channel activation an inhibition of oxidative phosphorylation takes place which reduces the rate of ATP synthesis and hydrolysis as well as ATP production and consequently results in the seeming increase of P/O ratio.
View Article and Find Full Text PDFThe effect of potential-dependent potassium uptake on the transmembrane potential difference (DeltaPsi(m)) in rat brain mitochondria has been studied. It was shown that in potassium concentration range of 0-120 mM the potential-dependent K(+)-uptake into matrix leads to the increase in respiration rate and mitochondrial depolarization. ATP-dependent potassium channel (K+(ATP)-channel) blockers, glibenclamide and 5-hydroxydecanoate, block approximately 35% of potential-dependent potassium uptake in the brain mitochondria.
View Article and Find Full Text PDF