The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and onset of the coronavirus disease-19 (COVID-19) pandemic led to an immediate need for therapeutic treatment options. Therapeutic antibodies were developed to fill a gap when traditional antivirals were not available. In late 2020, the United States Government undertook an effort to compare candidate therapeutic antibodies in virus neutralization assays and in the hamster model of SARS-CoV-2 infection.
View Article and Find Full Text PDFThe pathophysiology of long-recognized hematologic abnormalities in Ebolavirus (EBOV) disease (EVD) is unknown. From limited human sampling (of peripheral blood), it has been postulated that emergency hematopoiesis plays a role in severe EVD, but the systematic characterization of the bone marrow (BM) has not occurred in human disease or in nonhuman primate models. In a lethal rhesus macaque model of EVD, 18 sternal BM samples exposed to the Kikwit strain of EBOV were compared to those from uninfected controls (n = 3).
View Article and Find Full Text PDFBackground: Existing models of Ebola virus infection have not fully characterized the pathophysiology of shock in connection with daily virologic, clinical, and immunologic parameters. We implemented a nonhuman primate critical care model to investigate these associations.
Methods: Two rhesus macaques received a target dose of 1000 plaque-forming units of Ebola virus intramuscularly with supportive care initiated on day 3.