Publications by authors named "L Hunihan"

EGFR tyrosine kinase inhibitors (TKIs) have transformed the treatment of EGFR-mutated non-small cell lung carcinoma (NSCLC); however, therapeutic resistance remains a clinical challenge. Acquired secondary EGFR mutations that increase ATP affinity and/or impair inhibitor binding are well-described mediators of resistance. Here we identify a de novo EGFR Y891D secondary alteration in a NSCLC with EGFR L858R.

View Article and Find Full Text PDF

Tau is a microtubule-associated protein (, tau) implicated in the pathogenesis of tauopathies, a spectrum of neurodegenerative disorders characterized by accumulation of hyperphosphorylated, aggregated tau. Because tau pathology can be distinct across diseases, a pragmatic therapeutic approach may be to intervene at the level of the tau transcript, as it makes no assumptions to mechanisms of tau toxicity. Here we performed a large library screen of locked-nucleic-acid (LNA)-modified antisense oligonucleotides (ASOs), where careful tiling of the locus resulted in the identification of hot spots for activity in the 3' UTR.

View Article and Find Full Text PDF

Purpose: The identification of actionable oncogenic alterations has enabled targeted therapeutic strategies for subsets of patients with advanced malignancies, including lung adenocarcinoma (LUAD). We sought to assess the frequency of known drivers and identify new candidate drivers in a cohort of LUAD from patients with minimal smoking history.

Experimental Design: We performed genomic characterization of 103 LUADs from patients with ≤10 pack-year smoking history.

View Article and Find Full Text PDF

Adaptor protein 2-associated kinase 1 (AAK1) is a serine/threonine kinase that was identified as a therapeutic target for the potential treatment of neuropathic pain. Inhibition of AAK1 in the central nervous system, particularly within the spinal cord, was found to be the relevant site for achieving an antinociceptive effect. We previously reported that compound is a brain-penetrant, AAK1 inhibitor that showed efficacy in animal models for neuropathic pain.

View Article and Find Full Text PDF
Article Synopsis
  • * Research identified adaptor protein 2-associated kinase 1 (AAK1) as a potential target for neuropathic pain after screening mouse gene knockouts.
  • * A selective AAK1 inhibitor was developed, which showed effectiveness in pain relief during tests on mice and rats, indicating that targeting AAK1 could be a viable strategy for treating neuropathic pain.
View Article and Find Full Text PDF