Publications by authors named "L Hougan"

The beta and gamma subunits of the mating response G-protein in the yeast Saccharomyces cerevisiae have been shown to transmit the mating pheromone signal to downstream components of the pheromone response pathway. A protein kinase homologue encoded by the STE20 gene has recently been identified as a potential G beta gamma target. We have searched multicopy plasmid genomic DNA libraries for high gene dosage suppressors of the signal transduction defect of ste20 mutant cells.

View Article and Find Full Text PDF

The STE4 gene, which encodes the beta subunit of the mating response G-protein in the yeast Saccharomyces cerevisiae, was subjected to a saturation mutagenesis using 'doped' oligodeoxynucleotides. We employed a genetic screen to select dominant-negative STE4 mutants, which when overexpressed from the GAL1 promoter, interfered with the signalling function of the wild type protein. The identified inhibitory amino acid alterations define two small regions that are crucially involved in transmitting the mating signal from G beta to downstream components of the signalling pathway.

View Article and Find Full Text PDF

The STE4 gene of Saccharomyces cerevisiae encodes the beta subunit of the yeast pheromone receptor-coupled G protein. Overexpression of the STE4 protein led to cell cycle arrest of haploid cells. This arrest was like the arrest mediated by mating pheromones in that it led to similar morphological changes in the arrested cells.

View Article and Find Full Text PDF

We have identified a mutant strain of the yeast Saccharomyces cerevisiae which overproduces killer toxin. This strain contains a single mutation which fails to complement defects in both the SKI3 and SKI5 genes, while a cloned copy of this gene complements both the ski3 and ski5 defects. The level of secreted toxin from a cDNA based plasmid is not increased in a ski3 strain, showing that the overproduction phenotype is dependent upon an increased level of M1 dsRNA.

View Article and Find Full Text PDF

The STE4 and STE18 genes are required for haploid yeast cell mating. Sequencing of the cloned genes revealed that the STE4 polypeptide shows extensive homology to the beta subunits of mammalian G proteins, while the STE18 polypeptide shows weak similarity to the gamma subunit of transducin. Null mutations in either gene can suppress the haploid-specific cell-cycle arrest caused by mutations in the SCG1 gene (previously shown to encode a protein with similarity to the alpha subunit of G proteins).

View Article and Find Full Text PDF