We study interacting bosons on a lattice in a magnetic field. When the number of flux quanta per plaquette is close to a rational fraction, the low-energy physics is mapped to a multispecies continuum model: bosons in the lowest Landau level where each boson is given an internal degree of freedom, or pseudospin. We find that the interaction potential between the bosons involves terms that do not conserve pseudospin, corresponding to umklapp processes, which in some cases can also be seen as BCS-type pairing terms.
View Article and Find Full Text PDFBackground: To assess the usefulness of using ascorbic acid (vitamin C) administration in abdominal myomectomy.
Materials And Methods: A total of 102 patients were divided two groups in this prospective, clinical trial. Group A had received 2 g of ascorbic acid during a myomectomy, and group B had a myomectomy without any interventions.
Read-Rezayi fractional quantum Hall states are among the prime candidates for realizing non-Abelian anyons which, in principle, can be used for topological quantum computation. We present a prescription for efficiently finding braids which can be used to carry out a universal set of quantum gates on encoded qubits based on anyons of the Read-Rezayi states with k>2, k not equal 4. This work extends previous results which only applied to the case k=3 (Fibonacci) and clarifies why, in that case, gate constructions are simpler than for a generic Read-Rezayi state.
View Article and Find Full Text PDFThe Drosophila DNA topoisomerase type I mutant allele, top1JS is an effective general seizure-suppressor mutation, reverting seizure-sensitive phenotypes of several mutant strains in a genetic model of epilepsy. Seizure-suppression is caused by reduced transcription of the top1 (topoisomerase I gene) gene [Song J, Hu J, Tanouye MA. (2007) Seizure suppression by top1 mutations in Drosophila.
View Article and Find Full Text PDFIn a topological quantum computer, universal quantum computation is performed by dragging quasiparticle excitations of certain two dimensional systems around each other to form braids of their world lines in 2 + 1 dimensional space-time. In this Letter we show that any such quantum computation that can be done by braiding n identical quasiparticles can also be done by moving a single quasiparticle around n - 1 other identical quasiparticles whose positions remain fixed.
View Article and Find Full Text PDF