Publications by authors named "L Hollberg"

We describe a high-performance, compact optical frequency standard based on a microfabricated Rb vapor cell and a low-noise, external cavity diode laser operating on the Rb two-photon transition at 778 nm. The optical standard achieves an instability of 1.8×10 for times less than 100 s and a flicker noise floor of 1×10 out to 6000 s.

View Article and Find Full Text PDF

The need for an accurate time reference on orbiting platforms motivates study of time transfer via free-space optical communication links. The impact of atmospheric turbulence on earth-to-satellite optical time transfer has not been fully characterized, however. We analyze limits to two-way laser time transfer accuracy posed by anisoplanatic non-reciprocity between uplink and downlink.

View Article and Find Full Text PDF

Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments.

View Article and Find Full Text PDF

We demonstrate self-seeded generation of a broadband comb in a highly nonlinear fiber resonator. When pumped with a cw laser, the fiber cavity generates a comb with two characteristic spacings. Hyperparametric modes spaced by approximately 2 THz create the base structure of the comb, while commensurate Brillouin modes spaced by approximately 10 GHz populate the intermediate frequency gaps.

View Article and Find Full Text PDF

Optical filtering of a stabilized 1 GHz optical frequency comb produces a 20 GHz comb with approximately 40 nm bandwidth (FWHM) at 960 nm. Use of a low-finesse Fabry-Pérot cavity in a double-pass configuration provides a broad cavity coupling bandwidth (Deltalambda/lambda approximately 10%) and large suppression (50 dB) of unwanted modes. Pulse durations shorter than 40 fs with less than 2% residual amplitude modulation are achieved.

View Article and Find Full Text PDF