Publications by authors named "L Hernadi"

Ageing is associated in many organisms with a reduction in motor movements. We have previously shown that the rate of feeding movements of the pond snail, Lymnaea, decreased with age but the underlying cause is not fully understood. Here, we show that dopamine in the cerebro-buccal complex is an important signalling molecule regulating feeding frequency in Lymnaea and that ageing is associated with a decrease in CNS dopamine.

View Article and Find Full Text PDF

In this study, we investigate the potentiating effect of PACAP27 on cholinergic neuromuscular transmission in the recently discovered flexor muscles of the land snail, Helix pomatia. Using immunohistochemistry, we show that PACAP and PAC1 receptors are present in nerve fibers innervating the flexor muscles but not in the muscle itself. We also observed that PACAP27 exerts both pre- and postsynaptic effects on the cholinergic synapse and performed tests using a broad spectrum of chemicals in order to explore the possible intracellular pathways through which PACAP mediates its stimulatory effect.

View Article and Find Full Text PDF

Behavioural/motivational state is known to influence nearly all aspects of physiology and behaviour. The cellular basis of behavioural state control is only partially understood. Our investigation, performed on the pond snail Lymnaea stagnalis whose nervous system is useful for work on completely isolated neurons, provided several results related to this problem.

View Article and Find Full Text PDF

The involvement of serotonin in mediating hunger-related changes in behavioral state has been described in many invertebrates. However, the mechanisms by which hunger signals to serotonergic cells remain unknown. We tested the hypothesis that serotonergic neurons can directly sense the concentration of glucose, a metabolic indicator of nutritional state.

View Article and Find Full Text PDF

Three recently discovered tentacle muscles are crucial to perform patterned movements of upper tentacles of the terrestrial snail, Helix pomatia. The muscles receive central and peripheral excitatory cholinergic innervation lacking inhibitory innervation. Here, we investigate the pharmacology of acetylcholine (ACh) responses in muscles to determine the properties of the ACh receptor (AChR), the functional availability of which was assessed using isotonic contraction measurement.

View Article and Find Full Text PDF