The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant.
View Article and Find Full Text PDFChitin deacetylases (CDAs) are found in many different organisms ranging from marine bacteria to fungi and insects. These enzymes catalyze the removal of acetyl groups from chitinous substrates generating various chitosans, linear copolymers consisting of N-acetylglucosamine (GlcNAc) and glucosamine. CDAs influence the degree of acetylation of chitosans as well as their pattern of acetylation, a parameter that was recently shown to influence the physicochemical properties and biological activities of chitosans.
View Article and Find Full Text PDFIn our efforts to improve the quality and stability of chitosan nanoparticles (NPs), we describe here a new type of chitosan NPs dually crosslinked with genipin and sodium tripolyphosphate (TPP) that display quorum quenching activity. These NPs were created using a simplified and robust procedure that resulted in improved physicochemical properties and enhanced stability. This procedure involves the covalent crosslinking of chitosan with genipin, followed by the formation of chitosan NPs by ionic gelation with TPP.
View Article and Find Full Text PDFis an opportunistic fungal pathogen that infects ∼280,000 people every year, causing >180,000 deaths. The human immune system recognizes chitin as one of the major cell-wall components of invading fungi, but can circumvent this immunosurveillance mechanism by instead exposing chitosan, the partly or fully deacetylated form of chitin. The natural production of chitosans involves the sequential action of chitin synthases (CHSs) and chitin deacetylases (CDAs).
View Article and Find Full Text PDF