Background: Diagnosing rare genetic disorders relies on precise phenotypic and genotypic analysis, with the Human Phenotype Ontology (HPO) providing a standardized language for capturing clinical phenotypes. Traditional HPO tools, such as Doc2HPO and ClinPhen, employ concept recognition to automate phenotype extraction but struggle with incomplete phenotype assignment, often requiring intensive manual review. While large language models (LLMs) hold promise for more context-driven phenotype extraction, they are prone to errors and "hallucinations," making them less reliable without further refinement.
View Article and Find Full Text PDFExpanded carrier screening (ECS) intends to broadly screen healthy individuals to determine their reproductive chance for autosomal recessive (AR) and X-linked (XL) conditions with infantile or early-childhood onset, which may impact reproductive management (Committee Opinion 690, Obstetrics and Gynecology, 2017, 129, e35). Compared to ethnicity-based screening, which requires accurate knowledge of ancestry for optimal test selection and appropriate risk assessment, ECS panels consist of tens to hundreds of AR and XL conditions that may be individually rare in various ancestries but offer a comprehensive approach to inherited disease screening. As such, the term "equitable carrier screening" may be preferable.
View Article and Find Full Text PDFUltrasound Obstet Gynecol
June 2023
Objective: In-utero repair of open neural tube defects (ONTD) is an accepted treatment option with demonstrated superior outcome for eligible patients. While current guidelines recommend genetic testing by chromosomal microarray analysis (CMA) when a major congenital anomaly is detected prenatally, the requirement for an in-utero repair, based on the Management of Myelomeningocele Study (MOMS) criteria, is a normal karyotype. In this study, we aimed to evaluate if CMA should be recommended as a prerequisite for in-utero ONTD repair.
View Article and Find Full Text PDFObjective: This study sought to evaluate the experiences of individuals who chose to participate in a study and receive prenatal genomic sequencing (pGS) for fetuses with congenital structural anomalies.
Method: Individuals who received research results of prenatal sequencing were invited to participate in semi-structured interviews about their experiences. A constructivist grounded theory approach was used to code and analyze interviews.
Distal 1q21.1 microdeletions have shown highly variable clinical expressivity and incomplete penetrance, with affected individuals manifesting a broad spectrum of nonspecific features. The goals of this study were to better describe the phenotypic spectrum of patients with distal 1q21.
View Article and Find Full Text PDF