Radiother Oncol
December 2024
The advent of reversible deactivation radical polymerization (RDRP) revolutionized polymer chemistry and paved the way for accessing synthetic polymers with controlled sequences based on vinylic monomers. An inherent limitation of vinylic polymers stems from their all-carbon backbone, which limits both function and degradability. Herein, we report a synthetic strategy utilizing radical ring-opening polymerization (rROP) of complementary photoreactive cyclic monomers in combination with RDRP to embed photoresponsive functionality into desired blocks of polyvinyl polymers.
View Article and Find Full Text PDFMain-chain stimuli-responsive polymers synthesized via polymerization techniques that do not rely on metal-based catalysis are highly desirable for economic reasons and to avoid metal-polymer interactions. Herein, we introduce a metal-free head-to-tail organobase-catalyzed hydroxyl-yne click polymerization of an AB-type monomer to realize photoswitchable polymers featuring α-bismines as main-chain repeating units. The prepared main-chain α-bisimine-based polymers show excellent photoswitching in solution.
View Article and Find Full Text PDFAdvanced functional polymeric materials based on spiropyrans (SPs) feature multi-stimuli responsive characteristics, such as a change in color with exposure to light (photochromism) or acids (halochromism). The inclusion of stimuli-responsive molecules in general - and SPs in particular - as main-chain repeating units is a scarcely explored macromolecular architecture compared to side chain responsive polymers. Herein, we establish the effects of substitution patterns on SPs within a homopolymer main-chain synthesized head-to-tail Acyclic Diene METathesis (ADMET) polymerization.
View Article and Find Full Text PDF