This work investigates the conversion of bicelles into larger sheets or closed vesicles upon dilution and temperature increase for a system composed of the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the saponin aescin. Due to its peculiar amphiphilic character, aescin is able to decompose DMPC bilayers into smaller, rim-stabilized bicelles. Aspects of the transition process are analyzed in an aescin content- and temperature-dependent manner by photon correlation spectroscopy (PCS), turbidimetry and small-angle neutron scattering (SANS).
View Article and Find Full Text PDFA colloidal synthesis' proof-of-concept based on the Bligh-Dyer emulsion inversion method was designed for integrating into lipid nanoparticles (LNPs) cell-permeating DNA antisense oligonucleotides (ASOs), also known as GapmeRs (GRs), for mRNA interference. The GR@LNPs were formulated to target brain border-associated macrophages (BAMs) as a central nervous system (CNS) therapy platform for silencing neuroinflammation-related genes. We specifically aim at inhibiting the expression of the gene encoding for lipocalin-type prostaglandin D synthase (L-PGDS), an anti-inflammatory enzyme expressed in BAMs, whose level of expression is altered in neuropsychopathologies such as depression and schizophrenia.
View Article and Find Full Text PDFHybrid lipid/nanoparticle membranes are suitable model systems both to study the complex interactions between nanoparticles and biological membranes, and to demonstrate technological concepts in cellular sensing and drug delivery. Unfortunately, embedding nanoparticles into the bilayer membrane of lipid vesicles is challenging due to the poor control over the vesicle fabrication process of conventional methodologies and the fragility of the modified lipid bilayer assembly. Here, the utility of water-in-oil-in-water double emulsion drops with ultrathin oil shells as templates to form vesicles with hybrid lipid/nanoparticle membranes is reported.
View Article and Find Full Text PDFVesicle shape and bilayer parameters are studied by small-angle X-ray (SAXS) and small-angle neutron (SANS) scattering in the presence of the saponin aescin. We confirm successful incorporation of aescin molecules by analysis of the radii of gyration RG and study furthermore the impact of aescin incorporation on bilayer thickness parameters from the neutron and X-ray perspective. Additionally, the bending elasticity (κ) of these 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicle bilayers is studied in the presence of aescin.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.