Publications by authors named "L H Ferry"

The jaws and their supporting cartilages are tessellated in elasmobranchs and exhibit an abrupt increase in stiffness under compression. The major jaw-supporting cartilage, the hyomandibula, varies widely by shape and size and the extent of the load-bearing role is hypothesized to be inversely related to the number of craniopalatine articulations. Here, we test this hypothesis by evaluating the strength of the hyomandibular cartilage under compression in 13 species that represent all four jaw suspension systems in elasmobranchs (amphistyly, orbitostyly, hyostyly, and euhyostyly).

View Article and Find Full Text PDF

DNA methylation is an essential epigenetic chromatin modification, and its maintenance in mammals requires the protein UHRF1. It is yet unclear if UHRF1 functions solely by stimulating DNA methylation maintenance by DNMT1, or if it has important additional functions. Using degron alleles, we show that UHRF1 depletion causes a much greater loss of DNA methylation than DNMT1 depletion.

View Article and Find Full Text PDF

Breast cancer is the most prevalent type of cancer in women worldwide. Within breast tumors, the basal-like subtype has the worst prognosis, prompting the need for new tools to understand, detect, and treat these tumors. Certain germline-restricted genes show aberrant expression in tumors and are known as Cancer/Testis genes; their misexpression has diagnostic and therapeutic applications.

View Article and Find Full Text PDF

Tessellated cartilage forms much of the skeleton of sharks and rays, in contrast to most other aquatic vertebrates who possess a skeleton of bone. Interestingly, many species of sharks and rays also regularly generate exceptionally high forces in the execution of day-to-day activities, such as when feeding on bony fish, mammals, and hard-shelled invertebrates. Tessellated cartilage differs from other types of cartilage in that they are covered by an outer layer of small mineralized tiles (tesserae) that are connected by fibrous connective tissue.

View Article and Find Full Text PDF

Long interspersed element 1 (L1) retrotransposons are implicated in human disease and evolution. Their global activity is repressed by DNA methylation, but deciphering the regulation of individual copies has been challenging. Here, we combine short- and long-read sequencing to unveil L1 methylation heterogeneity across cell types, families, and individual loci and elucidate key principles involved.

View Article and Find Full Text PDF