Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not.
View Article and Find Full Text PDFBackground: Although cancer risk is assumed to be linear with ionizing radiation (IR) dose, it is unclear to what extent low doses (LD) of IR from medical and occupational exposures pose a cancer risk for humans. Improved mechanistic understanding of the signaling responses to LD may help to clarify this uncertainty. Here, we performed quantitative mass spectrometry-based proteomics and phosphoproteomics experiments, using mouse embryonic stem cells, at 0.
View Article and Find Full Text PDFThe influence of phosphoproteomics sample preparation methods on the biological interpretation of signaling outcome is unclear. Here, we demonstrate a strong bias in phosphorylation signaling targets uncovered by comparing the phosphoproteomes generated by two commonly used methods-strong cation exchange chromatography-based phosphoproteomics (SCXPhos) and single-run high-throughput phosphoproteomics (HighPhos). Phosphoproteomes of embryonic stem cells exposed to ionizing radiation (IR) profiled by both methods achieved equivalent coverage (around 20,000 phosphosites), whereas a combined dataset significantly increased the depth (>30,000 phosphosites).
View Article and Find Full Text PDF