The measurement of translational diffusion coefficients by NMR generally makes use basically of two magnetic field gradient pulses separated by a so-called diffusion interval. The magnetic field gradient arises either from the static magnetic field (denoted by B used for polarizing the nuclear spins) or from the radio-frequency field (denoted by B used for inducing NMR transitions). The B method may be hampered by short effective transverse relaxation times (T), by important gradient rise and fall times or by eddy currents.
View Article and Find Full Text PDFA coil system generating a vertical radio-frequency (rf) field gradient (B gradient) has been built for surrounding, in a horizontal magnet, a vertical sample (object) of axial symmetry. The system comprises three coaxial loops with an overall shape either spherical or ellipsoidal. The geometry has been theoretically and experimentally devised for producing a very uniform gradient (cancellation of B derivatives from second order up to sixth order) in the central region where a vertical receiver/transmitter coil is installed.
View Article and Find Full Text PDFUntil now, NQR imaging has been considered mainly in the case of Chlorine-35. This is a spin 3/2 resonating at relatively high frequency (around 30MHz) thus affording a favorable sensitivity. Conversely, Nitrogen-14 (spin 1) NQR is much less sensitive because its resonances frequencies are below 6MHz.
View Article and Find Full Text PDFAs demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions.
View Article and Find Full Text PDFThe application of a weak static B0 magnetic field (less than 1 mT) may produce a well-defined splitting of the (14)N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. It is theoretically shown and experimentally confirmed that the actual splitting (when it exists) as well as the line-shape and the signal intensity depends on three factors: (i) the amplitude of B0, (ii) the amplitude and pulse duration of the radio-frequency field, B1, used for detecting the NQR signal, and (iii) the relative orientation of B0 and B1. For instance, when B0 is parallel to B1 and regardless of the B0 value, the signal intensity is three times larger than when B0 is perpendicular to B1.
View Article and Find Full Text PDF