Publications by authors named "L Gromotka"

The formation mechanism of plasmonic gold nanoparticles (Au NPs) by fast NaBH induced reduction of the precursors is still under debate. In this work we introduce a simple method to access intermediate species of Au NPs by quenching the solid formation process at desired time periods. In this way, we take advantage of the covalent binding of glutathione on Au NPs to stop their growth.

View Article and Find Full Text PDF

Hypothesis: The applicability of the dynamic light scattering method for the determination of particle diffusivity under confinement without applying refractive index matching was not adequately explored so far. The confinement effect on particle diffusion in a porous material which is relevant for particle chromatography has also not yet been fully characterized.

Experiments: Dynamic light scattering experiments were performed for unimodal dispersions of 11-mercaptoundecanoic acid-capped gold nanoparticles.

View Article and Find Full Text PDF

Metallic alloy nanoparticles (NPs) exhibit interesting optical, electrical and catalytic properties, dependent on their size, shape and composition. In particular, silver-gold alloy NPs are widely applied as model systems to better understand the syntheses and formation (kinetics) of alloy NPs, as the two elements are fully miscible. Our study targets product design environmentally friendly synthesis conditions.

View Article and Find Full Text PDF

Size-exclusion chromatography (SEC) is a well-known, versatile and scalable technique for the separation of molecules according to their hydrodynamic size in solution as well as for the determination of molecular weight distributions of polymers. In this paper we demonstrate and generalize the applicability of SEC to the classification and characterization of multimodal distributions of nanoparticles over a broad size range. After calibration with gold standards from 5 nm to 80 nm, the calibration curve is used to determine the particle size distributions (PSDs) of the standards which are in agreement with comprehensive nanoparticle size analysis by analytical ultracentrifugation.

View Article and Find Full Text PDF