Development of restorative materials capable of mimicking optical and mechanical performance of natural teeth is a quest in aesthetic density. Yttria-Stabilized Zirconia (YSZ) ceramics represent one of the most popular choices for dental restorations, owing to their biocompatibility, white colour, and the possibility to use CAD-CAM technologies. In particular, YSZ doped with 3 mol.
View Article and Find Full Text PDFThe study of environmental DNA (eDNA) released by aquatic organisms in their habitat offers a fast, noninvasive and sensitive approach to monitor their presence. Common eDNA sampling methods such as water filtration and DNA precipitation are time-consuming, require difficult-to-handle equipment and partially integrate eDNA signals. To overcome these limitations, we created the first proof of concept of a passive, 3D-printed and easy-to-use eDNA sampler.
View Article and Find Full Text PDFHyperpolarization by dissolution dynamic nuclear polarization (dDNP) has enabled promising applications in spectroscopy and imaging, but remains poorly widespread due to experimental complexity. Broad democratization of dDNP could be realized by remote preparation and distribution of hyperpolarized samples from dedicated facilities. Here we show the synthesis of hyperpolarizing polymers (HYPOPs) that can generate radical- and contaminant-free hyperpolarized samples within minutes with lifetimes exceeding hours in the solid state.
View Article and Find Full Text PDFDue to growing demand for metal-free dental restorations, dental ceramics, especially dental zirconia, represent an increasing share of the dental implants market. They may offer mechanical performances of the same range as titanium ones. However, their use is still restricted by a lack of confidence in their durability and, in particular, in their ability to resist hydrothermal ageing.
View Article and Find Full Text PDFThe field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field.
View Article and Find Full Text PDF