A major challenge during minimally invasive surgery is transfer of high forces through small, flexible instruments, such as needles and catheters, because of their low buckling resistance. In this study, we determined the feasibility of using a Newton's Cradle-inspired catheter (patented) to transfer high-force impulses. Exerting a high-force impulse on the tissue increases the critical buckling load and can prevent buckling.
View Article and Find Full Text PDFCurrently, there are very few guidelines linking the results of pharmacogenetic tests to specific therapeutic recommendations. Therefore, the Royal Dutch Association for the Advancement of Pharmacy established the Pharmacogenetics Working Group with the objective of developing pharmacogenetics-based therapeutic (dose) recommendations. After systematic review of the literature, recommendations were developed for 53 drugs associated with genes coding for CYP2D6, CYP2C19, CYP2C9, thiopurine-S-methyltransferase (TPMT), dihydropyrimidine dehydrogenase (DPD), vitamin K epoxide reductase (VKORC1), uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), HLA-B44, HLA-B*5701, CYP3A5, and factor V Leiden (FVL).
View Article and Find Full Text PDFDespite initial enthusiasm, the use of pharmacogenetics has remained limited to investigation in only a few clinical fields such as oncology and psychiatry. The main reason is the paucity of scientific evidence to show that pharmacogenetic testing leads to improved clinical outcomes. Moreover, for most pharmacogenetic tests (such as tests for genetic variants of cytochrome P450 enzymes) a detailed knowledge of pharmacology is a prerequisite for application in clinical practice, and both physicians and pharmacists might find it difficult to interpret the clinical value of pharmacogenetic test results.
View Article and Find Full Text PDF