Mollusks, as well as many other living organisms, have the ability to shape mineral crystals into unconventional morphologies and to assemble them into complex functional mineral-organic structures, an observation that inspired tremendous research efforts in scientific and technological domains. Despite these, a biochemical toolkit that accounts for the formation of the vast variety of the observed mineral morphologies cannot be identified yet. Herein, phase-field modeling of molluscan nacre formation, an intensively studied biomineralization process, is used to identify key physical parameters that govern mineral morphogenesis.
View Article and Find Full Text PDFWe investigate bulk thermodynamic and microscopic structural properties of amorphous solids in the framework of the phase-field crystal (PFC) model. These are metastable states with a non-uniform density distribution, having no long-range order. From extensive numerical simulations, we determine the distribution of free energy density values in varying size amorphous systems and also the point-to-set correlation length, which is the radius of the largest volume of amorphous one can take while still having the particle arrangements within the volume determined by the particle ordering at the surface of the chosen volume.
View Article and Find Full Text PDFWhile biological crystallization processes have been studied on the microscale extensively, there is a general lack of models addressing the mesoscale aspects of such phenomena. In this work, we investigate whether the phase-field theory developed in materials' science for describing complex polycrystalline structures on the mesoscale can be meaningfully adapted to model crystallization in biological systems. We demonstrate the abilities of the phase-field technique by modeling a range of microstructures observed in mollusk shells and coral skeletons, including granular, prismatic, sheet/columnar nacre, and sprinkled spherulitic structures.
View Article and Find Full Text PDFSuspensions of neutrally buoyant elliptic particles are modeled in 2D using fully resolved simulations that provide two-way interaction between the particle and the fluid medium. Forces due to particle collisions are represented by a diffuse interface approach that allows the investigation of dense suspensions (up to 47% packing fraction). We focus on the role inertial forces play at low and high particle Reynolds numbers termed low Reynolds number and inertial regimes, respectively.
View Article and Find Full Text PDFSpherulites are radial distributions of acicular crystals, common in biogenic, geologic, and synthetic systems, yet exactly how spherulitic crystals nucleate and grow is still poorly understood. To investigate these processes in more detail, we chose scleractinian corals as a model system, because they are well known to form their skeletons from aragonite (CaCO) spherulites, and because a comparative study of crystal structures across coral species has not been performed previously. We observed that all 12 diverse coral species analyzed here exhibit plumose spherulites in their skeletons, with well-defined centers of calcification (CoCs), and crystalline fibers radiating from them.
View Article and Find Full Text PDF