Age estimation based on epigenetic markers is a DNA intelligence tool with the potential to provide relevant information for criminal investigations, as well as to improve the inference of age-dependent physical characteristics such as male pattern baldness or hair color. Age prediction models have been developed based on different tissues, including saliva and buccal cells, which show different methylation patterns as they are composed of different cell populations. On many occasions in a criminal investigation, the origin of a sample or the proportion of tissues is not known with certainty, for example the provenance of cigarette butts, so use of combined models can provide lower prediction errors.
View Article and Find Full Text PDFForensic age estimation is a DNA intelligence tool that forms an important part of Forensic DNA Phenotyping. Criminal cases with no suspects or with unsuccessful matches in searches on DNA databases; human identification analyses in mass disasters; anthropological studies or legal disputes; all benefit from age estimation to gain investigative leads. Several age prediction models have been developed to date based on DNA methylation.
View Article and Find Full Text PDFIndividual age estimation can be applied to criminal, legal, and anthropological investigations. DNA methylation has been established as the biomarker of choice for age prediction, since it was observed that specific CpG positions in the genome show systematic changes during an individual's lifetime, with progressive increases or decreases in methylation levels. Subsequently, several forensic age prediction models have been reported, providing average age prediction error ranges of ±3-4 years, using a broad spectrum of technologies and underlying statistical analyses.
View Article and Find Full Text PDFHuman head hair shape, commonly classified as straight, wavy, curly or frizzy, is an attractive target for Forensic DNA Phenotyping and other applications of human appearance prediction from DNA such as in paleogenetics. The genetic knowledge underlying head hair shape variation was recently improved by the outcome of a series of genome-wide association and replication studies in a total of 26,964 subjects, highlighting 12 loci of which 8 were novel and introducing a prediction model for Europeans based on 14 SNPs. In the present study, we evaluated the capacity of DNA-based head hair shape prediction by investigating an extended set of candidate SNP predictors and by using an independent set of samples for model validation.
View Article and Find Full Text PDFForensic Sci Int Genet
September 2018
DNA methylation is the most extensively studied epigenetic signature, with a large number of studies reporting age-correlated CpG sites in overlapping genes. However, most of these studies lack sample coverage of individuals under 18 years old and therefore little is known about the progression of DNA methylation patterns in children and adolescents. In the present study we aimed to select candidate age-correlated DNA methylation markers based on public datasets from Illumina BeadChip arrays and previous publications, then to explore the resulting markers in 209 blood samples from donors aged between 2 to 18 years old using the EpiTYPER® DNA methylation analysis system.
View Article and Find Full Text PDF