Publications by authors named "L Girlanda"

We present a theoretical study of the processes d(d,p)^{3}H and d(d,n)^{3}He at energies of interest for energy production and for big-bang nucleosynthesis. We accurately solve the four body scattering problem using the ab initio hyperspherical harmonics method, starting from nuclear Hamiltonians which include modern two- and three-nucleon interactions, derived in chiral effective field theory. We report results for the astrophysical S factor, the quintet suppression factor, and various single and double polarized observables.

View Article and Find Full Text PDF

The large values of the singlet and triplet two-nucleon scattering lengths locate the nuclear system close to the unitary limit. This particular position strongly constrains the low-energy observables in the three-nucleon system as depending on one parameter, the triton binding energy, and introduces correlations in the low-energy sector of light nuclei. Here we analyze the propagation of these correlations to infinite nuclear matter showing that its saturation properties, the equation of state of β-stable nuclear matter, and several properties of neutron stars, as their maximum mass, are well determined solely by a few number of low-energy quantities of the two- and three-nucleon systems.

View Article and Find Full Text PDF

In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. In this Letter, we present Green's function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components.

View Article and Find Full Text PDF

We present a detailed study of the effect of different three-nucleon interactions in p-(3)He elastic scattering at low energies. In particular, two interactions have been considered: one derived from effective field theory at next-to-next-to-leading order and one derived from a more phenomenological point of view-the so-called Illinois model. The four-nucleon scattering observables are calculated by using the Kohn variational principle and the hyperspherical harmonics technique, and the results are compared with available experimental data.

View Article and Find Full Text PDF

We report on a study of the nd and n(3)He radiative captures at thermal neutron energies, using wave functions obtained from either chiral or conventional two- and three-nucleon realistic potentials with the hyperspherical-harmonics method, and electromagnetic currents derived in chiral effective field theory up to one loop. The predicted nd and n(3)He cross sections are in good agreement with data, but exhibit a significant dependence on the input Hamiltonian. A comparison is also made between these and new results for the nd and n(3)He cross sections obtained in the conventional framework for both potentials and currents.

View Article and Find Full Text PDF