Publications by authors named "L Ghisolfi"

Background/aim: In this study, the effects of resveratrol as a natural polyphenol compound, gemcitabine as an antimetabolite that has nucleoside structure analogous to deoxycytidine, and para-aminophenol-derived paracetamol were investigated with single and combined applications in monolayers of the MDAH-2774 human ovarian cancer cell line. Materials and methods: Drugs were evaluated in cell culture with respect to cell proliferation, cell cytotoxicity (trypan blue dye exclusion test), synthesis phase of cell cycle, and cell structure in 24, 48, 72, and 96 h. Result: Resveratrol and gemcitabine diminished both cell proliferation and cell cycle synthesis phase indication in monolayer cell cultures (P < 0.

View Article and Find Full Text PDF

The precursor homocysteine is metabolized either through the methionine cycle to produce methionine or through the transsulfuration pathway to synthesize cysteine. Alternatively, cysteine can be obtained through uptake of its oxidized form, cystine. Many cancer cells exhibit methionine dependency such that their proliferation is impaired in growth media in which methionine is replaced by homocysteine.

View Article and Find Full Text PDF

The cancer stem cell (CSC) model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies.

View Article and Find Full Text PDF

Recent studies indicate that cancer stem cells (CSCs) exist in most hematological and solid tumors. CSCs are characterized by their ability to self-renew and their capacity to differentiate into the multitude of cells that comprise the tumor mass. Moreover, these cells have been shown to be intrinsically resistant to conventional anticancer therapies.

View Article and Find Full Text PDF

Hemoglobin is the major biosynthetic product of developing erythroid cells. Assembly of hemoglobin requires the balanced production of globin proteins and the oxygen-carrying heme moiety. The heme-regulated inhibitor kinase (HRI) participates in this process by phosphorylating eIF2α and inhibiting the translation of globin proteins when levels of free heme are limiting.

View Article and Find Full Text PDF