Acoustic ejection mass spectrometry is a novel high-throughput analytical technology that delivers high reproducibility without carryover observed. It eliminates the chromatography step used to separate analytes from matrix components. Fully-automated liquid-liquid extraction is widely used for sample cleanup, especially in high-throughput applications.
View Article and Find Full Text PDFWe describe a mass spectrometry (MS) analytical platform resulting from the novel integration of acoustic droplet ejection (ADE) technology, an open-port interface (OPI), and electrospray ionization (ESI)-MS that creates a transformative system enabling high-speed sampling and label-free analysis. The ADE technology delivers nanoliter droplets in a touchless manner with high speed, precision, and accuracy. Subsequent sample dilution within the OPI, in concert with the capabilities of modern ESI-MS, eliminates the laborious sample preparation and method development required in current approaches.
View Article and Find Full Text PDFThe primary goal of high-throughput screening (HTS) is to rapidly survey a broad collection of compounds, numbering from tens of thousands to millions of members, and identify those that modulate the activity of a therapeutic target of interest. For nearly two decades, mass spectrometry has been used as a label-free, direct-detection method for HTS and is widely acknowledged as being less susceptible to interferences than traditional optical techniques. Despite these advantages, the throughput of conventional MS-based platforms like RapidFire or parallel LC-MS, which typically acquire data at speeds of 6-30 s/sample, can still be limiting for large HTS campaigns.
View Article and Find Full Text PDFFor nearly two decades mass spectrometry has been used as a label-free, direct-detection method for both functional and affinity-based screening of a wide range of therapeutically relevant target classes. Here, we present an overview of several established and emerging mass spectrometry platforms and summarize the unique strengths and performance characteristics of each as they apply to high-throughput screening. Multiple examples from the recent literature are highlighted in order to illustrate the power of each individual technique, with special emphasis given to cases where the use of mass spectrometry was found to be differentiating when compared with other detection formats.
View Article and Find Full Text PDF